
Assignment 3: Higher-Order Functions CS351—Fall 2008

Due 23:59 Sun 19-Oct-2008. Email one text file containing all your solutions to:

barak+cs351-hw3@cs.nuim.ie.

1. Define map-leaves which takes a function and an s-expression and returns the result of

applying the given function to every non-list datum inside the given s-expression.

(map-leaves - ’((1 2) -3 -4 (((5) (()))))) ⇒ ((-1 -2) 3 4 (((-5) (()))))

(map-leaves list ’(a (b c) d)) ⇒ ((a) ((b) (c)) (d))

Solution:

(define map-leaves
(lambda (f s)

(cond ((pair? s) (cons (map-leaves f (car s))
(map-leaves f (cdr s))))

((null? s) s)
(else (f s)))))

or

(define map-leaves
(lambda (f s)

(map-leaves-2 (lambda (x1 x2) (f x1))
s s)))

2. Define flip which has the following behaviour:

((flip /) 2 10) ⇒ 5

((flip list) ’aye ’bee) ⇒ (bee aye)

((flip append) ’(a b c) ’(1 2 3)) ⇒ (1 2 3 a b c)

Solution:

(define flip
(lambda (f)

(lambda (y x)
(f x y))))

3. Define map-leaves-2 which takes a binary function and two s-expressions, and applies to

the given function to structurally corresponding elements of the two s-expressions in which

one of the two elements is not a list. E.g.,

(map-leaves-2 + ’(1 2 (3 4)) ’(10 20 (30 40))) ⇒ (11 22 (33 44))

(map-leaves-2 list ’(1 2 (3 4)) ’(10 20 (30 40)))
⇒ ((1 10) (2 20) ((3 30) (4 40)))

(map-leaves-2 cons ’(1 2 (3 4)) ’(() (a b) ((c d e) (f))))
⇒ ((1) (2 a b) ((3 c d e) (4 f)))

Solution:

(define map-leaves-2
(lambda (f s1 s2)

(cond ((and (pair? s1) (pair? s2))
(cons (map-leaves-2 f (car s1) (car s2))

(map-leaves-2 f (cdr s1) (cdr s2))))
((or (null? s1) (null? s2)) ’())
(else (f s1 s2)))))

4. Define swizzle-leaves which takes an s-expression and an association list and switches

each item in the s-expression which appears as a key in the alist for the corresponding

associated item.

(swizzle-leaves ’(a (b c a) d) ’((a aye) (c sea))) ⇒ (aye (b sea aye) d)

Solution:

(define swizzle-leaves
(lambda (s alist)

(cond ((null? s) s)
((pair? s) (cons (swizzle-leaves (car s) alist)

(swizzle-leaves (cdr s) alist)))
(else ((maybe-lookup-curried alist) key)))))

(define maybe-lookup-curried
(lambda (alist)

(lambda (key)
(cond ((assoc key alist) => cadr)

(else key)))))

or

(define swizzle-leaves
(lambda (s alist)

(map-leaves (maybe-lookup-curried alist) s)))

or

(define swizzle-leaves
(lambda (s alist)

(map-leaves (lambda (x)
(cond ((assoc x alist) => cadr)

(else x)))
s)))

5. Consider the following “little language” of constrained binary numeric expressions:

〈expr〉 := 〈number〉 | (〈expr〉 〈op〉 〈expr〉)

〈op〉 := + | * | - | /

2

where 〈number〉 is a native Scheme number. (Note that all those parenthesis are

mandatory.) Define eval-expr which evaluates such an expr, represented in the obvious

way as a Scheme s-expression, using the obvious semantics.

(eval-expr 17) ⇒ 17

(eval-expr ’(17 + 1)) ⇒ 18

(eval-expr ’(17 + (10 / 2))) ⇒ 19

(eval-expr ’(0 - (((1 + (1 + 1)) + 1) / 2))) ⇒ -2

Solution:

(define eval-expr
(lambda (e)

(cond ((pair? e)
((lookup-op (cadr e))
(eval-expr (car e))
(eval-expr (caddr e))))

(else e))))

(define lookup-op
(lambda (op)

(cond ((equal? op ’+) +)
((equal? op ’-) -)
((equal? op ’*) *)
((equal? op ’/) /))))

6. (Optional) If you encountered any problems with the assignment, or have any comments

on it, or other comments or suggestions, I would appreciate hearing them. As practice for

actual work, where weekly reports are not unusual, please embody these in a brief report.

Solution:

This is the best class ever. My only suggestion: longer harder assignments. And more of

them!

Honor Code: You may discuss these with others, but please write your answers by yourself

and without reference to communal notes. In other words, your answers should be from

your own head.

3

